®'SQL

Welcome to the first installment of Surviving SQL, a
semi-regular supplement devoted to tips and
tricks of the SQL language itself. Some of you have
asked to see more coverage of SQL topics, and your
Editor and | have come up with this periodic “injection”
to help satisfy your cravings! If you have an SQL ques-
tionyou’d like to see covered here, or even a brieftip or
trick of your own you’d like to share, then send me an
email at the address listed at the end of the article.

Since we have been discussing phonetic matching
algorithms, let’s take a closer look at the Soundex algo-
rithm from an SQL standpoint. Obviously, a Soundex
code is going to be attached to a record containing the
actual name and all new records will get a Soundex
code generated for them. Further, if we change an exist-
ing name, we will want a new Soundex code for that
name. Sounds like an ideal candidate for a database
trigger. Many databases have built-in Soundex func-
tions which can easily be incorporated into a trigger.

As an exercise, and for those developers without a
builtin Soundex function in their database, let’s look at
how we can implement Soundex in SQL. Obviously,
how we do this is going to depend greatly on the SQL
language provided by the vendor.

The listing at the end shows an SQL implementation
for Soundex using Microsoft SQL Server’s Transact-
SQL. In practice we’d be better off from a performance
standpoint to write a SQL Server extended stored pro-
cedure in a Delphi DLL. But today we’re interested in
SQL, so let’s write a standard stored procedure.

There are a few peculiarities in SQL we need to con-
cern ourselves with. The first is the possibility of null
input. Although the algorithm will ultimately produce a
null result, we explicitly test for null input at the start
and avoid the expense of running the entire algorithm.

The output Soundex code will always be a fixed-
length four character code, but | deliberately used a
Varchar datatype rather than a Char datatype for the
output parameter. Why? Because it made the algo-
rithm easier to code by appending the digits onto the
end of the return string. With a char datatype, the vari-
able always contains four characters, even if it has to
pad with spaces, so you’d have to specifically replace
each character in position rather than simply append
on the end. | did try this approach to see if any speed
benefit could be gained and found no measurable
difference in performance.

Another point to consider is that in Transact-SQL
there is no such thing as an empty string. Empty strings

22 The Delphi Magazine

are automatically changed to a single space character,
S0 you can never have a zero-length varchar string. To
account for this in our algorithm, we initially set our
return string to a null character (ASCII 0) using the Char
function. Similarly we test for an ASCII 0 character in
the return string when we’re deciding whether or not
we’ve got the first character.

The char function, not to be confused with the Char
datatype, is similar to Delphi’s Chr function and returns
the character represented by the given ASCIl code. On
the other hand, the AsciI function returns the ASCII
code for a given character. Beyond these issues, the
SQL version of our Soundex algorithm is very much the
same as our Delphi version.

A final comment concerns vendors’ built-in Soundex
functions. Transact-SQL includes a Soundex function
which | compared to the algorithm presented here. |
found some cases where the built-in function produced
different Soundex codes. The built-in function stops
processing the input string at the first non-alpha
character it finds, so the name Hale-Shaw returns H400
from Transact-SQL’s function and H420 from ours.
Also, the built-in function does not discard duplicate
digit codes.

All three of my sources for the Soundex algorithm
state that duplicate digits in the returned code should
be collapsed into a single digit. But for the name
Buchanan, the Transact-SQL function returns B255,
whereas ours returns B250. These strike me as
limitations of the built-in function and serve as another
reason why you might be tempted to code your own
Soundex function even if one is provided by your
vendor.

create procedure MakeSoundex(@Word varchar(255),
@Code varchar(4) output)
as
declare @I Int
declare @Ch Char
declare @LastCh Char
declare @MaxCodelLength Smalllnt
declare @LetterCodes char(26)
begin
if @Word is null begin
select @Code = null
return(0)
end
/*ABCDEFGHIJKLMNOPQRSTUVWXYZ*/
select @LetterCodes = '01230120022455012623010202"
select @axCodelength = 4
select @Code = Char(0), @LastCh = Char(0), @I =1
select @lord = Upper(@Word)
wh;1e.DataLength(@Code) <> @MaxCodelLength
egin
if @I > Datalength(@Word)
select @Code = @Code + '0'
else begin
select @h = Substring(@Word, @I, 1)
if (@h >= 'A') and (@Ch <= 'Z'")
if @Code = Char(0)
select @Code = @Ch
else begin
select @Ch =
Substring(@LetterCodes, Ascii(@Ch)-64, 1)
if (@h <> '0') and (@Ch <> @LastCh)
select @Code = @Code + @Ch, @LastCh = @Ch

en
select @I = @I + 1
end
end
end

Steve Troxell is a software engineer with Ultimate
Software Group in the USA. He can be contacted via
email at Steve_Troxell@USGroup.com

Issue 28

